↳ ITRS
↳ ITRStoIDPProof
z
cu(TRUE, x) → cu(<@z(x, 100000@z), +@z(x, 1@z))
cu(TRUE, x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
cu(TRUE, x) → cu(<@z(x, 100000@z), +@z(x, 1@z))
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(<@z(x[0], 100000@z) →* TRUE))
cu(TRUE, x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(<@z(x[0], 100000@z) →* TRUE))
cu(TRUE, x0)
(1) (+@z(x[0], 1@z)=x[0]1∧<@z(x[0]1, 100000@z)=TRUE∧+@z(x[0]1, 1@z)=x[0]2∧<@z(x[0], 100000@z)=TRUE ⇒ CU(TRUE, x[0]1)≥NonInfC∧CU(TRUE, x[0]1)≥CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))∧(UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥))
(2) (<@z(+@z(x[0], 1@z), 100000@z)=TRUE∧<@z(x[0], 100000@z)=TRUE ⇒ CU(TRUE, +@z(x[0], 1@z))≥NonInfC∧CU(TRUE, +@z(x[0], 1@z))≥CU(<@z(+@z(x[0], 1@z), 100000@z), +@z(+@z(x[0], 1@z), 1@z))∧(UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥))
(3) (99998 + (-1)x[0] ≥ 0∧99999 + (-1)x[0] ≥ 0 ⇒ (UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)x[0] ≥ 0∧0 ≥ 0)
(4) (99998 + (-1)x[0] ≥ 0∧99999 + (-1)x[0] ≥ 0 ⇒ (UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)x[0] ≥ 0∧0 ≥ 0)
(5) (99998 + (-1)x[0] ≥ 0∧99999 + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)x[0] ≥ 0)
(6) (99998 + (-1)x[0] ≥ 0∧99999 + (-1)x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥)∧-1 + (-1)Bound + (-1)x[0] ≥ 0)
(7) (99998 + x[0] ≥ 0∧99999 + x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, 100000@z), +@z(x[0]1, 1@z))), ≥)∧-1 + (-1)Bound + x[0] ≥ 0)
POL(CU(x1, x2)) = (-1)x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(100000@z) = 100000
POL(<@z(x1, x2)) = -1
POL(1@z) = 1
POL(undefined) = -1
CU(TRUE, x[0]) → CU(<@z(x[0], 100000@z), +@z(x[0], 1@z))
CU(TRUE, x[0]) → CU(<@z(x[0], 100000@z), +@z(x[0], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
cu(TRUE, x0)